Nanorakenteita voidaan nyt "3D-tulostaa" DNA:ta käyttäen
Aalto-yliopiston ja Tukholman Karoliinisen instituutin tutkijat ovat kehittäneet menetelmän, jonka avulla DNA:sta voidaan laskostaa lähes mielivaltaisia kolmiulotteisia rakenteita. Menetelmää voidaan verrata nanomittakaavan 3D-tulostukseen.
Aalto-yliopiston tietotekniikan laitoksella kehitetyn laskennallisen suunnittelumenetelmän lähtökohtana on tavoitellun kolmiulotteisen rakenteen hilamalli, jollaisia käytetään mm. tietokonegrafiikassa ja teollisessa suunnittelussa. Menetelmän avulla voidaan syötteenä annettu malli kuvata DNA-jonoiksi, jotka ns. DNA-origamitekniikkaa käyttäen yhdistyvät suolaliuoksessa halutuksi rakenteeksi. Karoliinisessa instituutissa tehdyt, erivahvuisissa suolaliuoksissa toteutetut kokeet vahvistavat, että suunnitellut DNA-kierteet hybridisoituivat haluttuihin muotoihin, jopa kehon luonnollista matalaa suolapitoisuutta vastaavissa liuoksissa. Tulos on juuri julkaistu .
”Kehittämämme suunnittelumenetelmän etuna on, että saatoimme tehdä prosessista täysin automaattisen ja näin toteuttaa monimutkaisiakin rakenteita. Aiemmat lähestymistavat kolmiulotteisten DNA-rakenteiden muodostamiseen ovat perustuneet käsityöhön ja toteutetut rakenteet ovat olleet hyvin yksinkertaisia. Uskonkin, että kehittyneillä tietoteknisillä menetelmillä tulee olemaan suuri merkitys DNA-nanoteknologian kehitykseen, kun pyritään laboratoriokokeiden mittakaavasta kohti mullistavia sovelluksia”, sanoo professori Pekka Orponen Aalto-yliopistosta.
Uusi menetelmä mahdollistaa lähes mielivaltaisten kolmiulotteisten DNA-rakenteiden syntetisoinnin. Tekniikalle on välitöntä käyttöä solubiologian perustutkimuksessa ja pidemmälle katsoen esimerkiksi täsmälääkkeiden ja elimistön tai ympäristön tilan seurantaan käytettävien bioilmaisinmolekyylien kehittämisessä.
”Biologista käyttöä varten tarvitsemme rakenteita, jotka laskostuvat ja säilyttävät muotonsa laboratorioympäristön lisäksi myös fysiologisissa suolaliuoksissa. Uusi synteesi- ja suunnittelumenetelmä käyttää myös DNA-materiaalia huomattavasti tehokkaammin kuin aiemmat lähestymistavat ja tekee näin mahdolliseksi entistä mutkikkaampien rakenteiden syntetisoinnin”, sanoo tutkimuksen johtaja Björn Högberg Karoliinisesta instituutista.
Menetelmää käyttäen tuotetut rakenteet ovat halkaisijaltaan 20-100 nanometrin (millimetrin miljoonasosan) kokoluokkaa, kun ihmishius on halkaisijaltaan noin 50,000 nanometriä. Uuden tekniikan avulla tutkijat rakensivat muun muassa nanokokoisen pallon, sauvan, spiraalin, pullon ja DNA-tulostetun version istuvaa jänistä esittävästä Stanford Bunny -mallista, joka on 3D-mallintamisessa paljon käytetty testirakenne.
Tietotekniikan laitos hyödynsi laskennassa Aalto-yliopiston Perustieteiden korkeakoulun Triton-laskentaklusterin tietokonekapasiteettia.
äپٴᲹ:
Professori Pekka Orponen
pekka.orponen@aalto.fi
puh. 0500 819491
Tietotekniikan laitos
Aalto-yliopiston perustieteiden korkeakoulu
Lue lisää uutisia
Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla
BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.
TAIMI-hanke rakentaa tasa-arvoista työelämää – kuusivuotinen konsortiohanke etsii ratkaisuja rekrytoinnin ja osaamisen haasteisiin
Tekoäly muuttaa osaamistarpeita, väestö ikääntyy ja työvoimapula syvenee. Samalla kansainvälisten osaajien potentiaali jää Suomessa usein hyödyntämättä. Näihin työelämän haasteisiin vastaa Strategisen tutkimuksen neuvoston rahoittama kuusivuotinen TAIMI-hanke, jota toteuttaa laaja konsortio.
Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026
Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.