Läpimurto fotoniikassa: dataa siirtävä valosignaali sai lisävoimaa nanokoon vahvistimesta

Datansiirto valolla on energiatehokkaampaa ja nopeampaa kuin sähköllä. Valosignaalin nopea vaimeneminen mikrosirun sisällä on kuitenkin estänyt valon käyttöä informaatiosignaalin lähteenä.
Nyt Aalto-yliopiston tutkijat ovat kehittäneet yhteistyössä ranskalaisen Université Paris-Sud-yliopiston tutkijoiden kanssa nanokoon vahvistimen, jonka avulla mikrosirun sisällä kulkeva valosignaali kulkee alusta loppuun saakka hyvin vahvana. Tuoreessa Nature Communications -tiedelehdessä julkaistussa tutkimuksessa tutkijat osoittivat, että signaalin häviötä voidaan pienentää merkittävästi, kun dataa siirretään mikrosirun sisällä esimerkiksi yhdestä prosessorista toiseen.
”Internetyhteyksissä jo käytössä oleva fotoniikka eli valonsiirto on siirtymässä myös mikropiirijärjestelmien käyttöön. Valo on sähköä energiatehokkaampi ja nopeampi tapa siirtää dataa. Informaation lisääntyminen myös pakottaa suorituskyvyn kasvattamiseen. Elektroniikan keinoin suorituskyvyn kasvattaminen alkaa olla erittäin hankalaa, mistä syystä fotoniikasta haetaan vastauksia”, tohtorikoulutettava John Rönn kertoo.
Apua atomikerroskasvatuksesta
Tutkijat onnistuivat läpimurrossaan käyttämällä suomalaista keksintöä: atomikerroskasvatusmenetelmää. Tutkijoiden mukaan menetelmä on ihanteellinen erilaisten mikropiirien prosessointiin, sillä se on jo tärkeä osa nykyisten mikroprosessoreiden valmistusta.
Atomikerroskasvatusmenetelmää on tähän mennessä käytetty lähinnä elektroniikan sovelluksiin. Nyt julkaistu tutkimus kuitenkin osoittaa, että sovelluskohteita on myös fotoniikassa. Fotoniikan kehittymisessä on tärkeää, että uudet komponentit toimivat myös sähkön kanssa, eli elektroniikassa.
”Pii-alkuaine on elektroniikan keskeinen materiaali, ja siksi se on mukana myös valovahvistimessa yhdessä erbium-alkuaineen kanssa” Rönn kertoo.
”Nykyisiä yhdistelmäpuolijohteita, joita käytetään esimerkiksi LED-teknologiassa, voidaan myös käyttää tehokkaasti valon vahvistamiseen. Suurin osa yhdistelmäpuolijohteista ei kuitenkaan ole yhteensopivia piin kanssa, mikä on ongelma massatuotannon kannalta.”
Tutkimus osoitti, että valosignaalia voidaan todennäköisesti vahvistaa kaikenlaisissa rakenteissa eikä mikrosirun rakenteen tarvitse olla tietynlainen. Tulosten perusteella atomikerroskasvatusmenetelmä osoittautui erittäin lupaavaksi mikrosirussa tapahtuvien prosessien kehittämiseen.
”Kansainvälinen yhteistyömme tuotti läpimurron yhden komponentin eli nanokoon vahvistimen kanssa, ja saavuttamamme vahvistus oli todella merkittävä. Tulevaisuudessa komponentteja tarvitaan kuitenkin lisää, jotta valo voi täysin korvata sähkön datansiirtojärjestelmissä. Ensimmäiset sovellusmahdollisuudet ovat nanolasereissa, sekä datan lähettämisessä että vahvistamisessa”, professori Zhipei Sun sanoo.
Artikkeli julkaistiin äskettäin Nature Communications-lehdessä.
(nature.com)
äپٴᲹ:
tohtorikoulutettava John Rönn
Aalto-yliopisto, elektroniikan ja nanotekniikan laitos
john.ronn@aalto.fi
professori Zhipei Sun
Aalto-yliopisto, elektroniikan ja nanotekniikan laitos
puh. 050 430 2820
zhipei.sun@aalto.fi
Lue lisää uutisia

Yhteyksien luomisen, vuoropuhelun ja konkreettisen toiminnan mahdollistaminen on tärkeämpää kuin koskaan
Kauppakorkeakoulussa järjestettiin kaksi työpajaa, joiden tarkoituksena oli tuoda yhteen eri toimijoita ja näkökulmia sekä edistää merkityksellisiä tekoja ja toimintaa tasa-arvon, monimuotoisuuden ja osallisuuden (EDI) alueilla.
Yli puolet korkeakoulutetuista maahanmuuttajista työllistyy Espoon ja Aalto-yliopiston kehittämällä palvelulla
۳ٱٲöllä on saatu aikaan erinomaisia tuloksia korkeakoulutettujen maahanmuuttajien työllistymisessä.
Viisi asiaa: Origami taittuu moneksi
Sana 'ori' on japania ja tarkoittaa taitettua, sana 'kami' taas paperia. Japanilaista paperintaittelua ja sen tuloksena syntynyttä esinettä kutsutaan origamiksi. Vuosisatoja vanhaa keksintöä hyödynnetään Aallossa lukuisilla eri aloilla. Tässä niistä muutama.