ɫɫÀ²

Uutiset

Andrea Sand tutkii säteilyä ydinreaktoreissa ja ulkoavaruudessa

Aalto-yliopiston teknillisen fysiikan laitoksen professori Andrea Sand mallintaa säteilyn vaikutusta materiaaleihin ja kehittää uusia energialähteitä tulevaisuutta varten.
Professor Sand on the left, with one her simulations on the right
Andrea Sand vasemmalla. OIkealla on atomitason tietokonesimulaatio, jolla mallinnetaan säteilyn vaikutusta ydinreaktorissa.

Mitä tutkit ja miksi?

Tutkin säteilyn vaikutusta materiaaleihin tietokonesimulaatioiden avulla. Säteilyyn liittyvät prosessit ovat niin nopeita ja tapahtuvat niin pienessä mittakaavassa, että niitä on hyvin vaikea havainnoida tavanomaisten kokeiden avulla. Lisäksi säteilytyksen olosuhteet ovat niin monimutkainen kokonaisuus, että sitä on lähes mahdotonta luoda uudelleen laboratoriossa. Esimerkkejä tästä ovat ydinreaktorin säteilytaso tai kosminen säteily avaruudessa. Jotta voimme ymmärtää näitä prosesseja ja ennustaa niiden mahdollisia vaikutuksia, meidän on mallinnettava niitä tietokoneiden avulla.

Keskityn lähinnä sellaisiin materiaalien tulevaisuuden sovelluksiin, joissa säteily on keskeisessä osassa. Niihin kuuluvat ydinfuusio ja ydinfission seuraava sukupolvi. Nykyisissä fissioreaktoreissa materiaalit ovat olleet paikallaan vuosikymmeniä, joten voimme purkaa ne ja katsoa, miten ne ovat muuttuneet. Seuraavan sukupolven reaktoreja suunniteltaessa emme kuitenkaan voi vielä tehdä niin, joten simulaatiot ovat tärkeitä niiden suunnittelussa.

Säteilyvahinkojen tutkiminen on tärkeää, koska säteily muuttaa ajan myötä materiaalien käyttäytymistä. Esimerkiksi materiaalin lämmönjohtavuus muuttuu ajan myötä, jos materiaali altistuu säteilylle. Lämmönjohtavuus on reaktorissa tärkeä ominaisuus, koska lämpö on saatava ulos reaktorista, jotta se voidaan muuttaa hyödylliseksi sähköenergiaksi. Turvallisuusnäkökulmasta rakenteellinen kestävyys on vielä tärkeämpi reaktorin ominaisuus. Säteily voi saada materiaalit haurastumaan eri lämpötiloissa tavallista enemmän.

Viime aikoina olen alkanut tutkia myös sitä, miten säteily vaikuttaa puolijohteisiin. Tällä on merkitystä, kun parannetaan satelliittien elektroniikan resistenssiä säteilyvahingoille ja kasvatetaan alhaisen lämpötilan hiukkasilmaisinten resoluutiota. Tällaisia ilmaisimia ovat esimerkiksi puolijohdeilmaisimet, joita käytetään etsittäessä pimeää ainetta maasta käsin.

Mikä sinua tässä alassa kiinnostaa?

Materiaalien reaktiot säteilyyn muodostavat suuren rajoitteen tulevaisuuden energiateknologioille. Nämä kysymykset ovat siis tärkeitä ja haastavia. Jos onnistumme selvittämään turvallisuuteen ja kaupalliseen kannattavuuteen liittyvät kysymykset, fissiosta ja fuusiosta saatava ydinenergia voi samanaikaisesti sekä vastata kasvavaan energiantarpeeseen että torjua ilmastonmuutosta.

Pidän täsmällisistä matemaattisista malleista, mutta samalla arvostan simulaatioiden kykyä muodostaa yhteys analyyttisten mallien ja kokeellisen tutkimuksen välille. Taustani on teoreettisessa fysiikassa ja aivan ensimmäinen tutkimusartikkelini käsitteli kvanttimekaniikan loogisia perusteita sekä sen rajojen ja likiarvojen mallintamista. Myöhemmin olen siirtynyt malleihin, joihin liittyy enemmän todellista dataa ja oletuksia mutta myös enemmän arkielämän sovelluksia.

Mitä odotat tulevaisuudelta?

Meidän on pystyttävä ymmärtämään materiaalimuutoksia, joita tapahtuu kaikissa mittakaavoissa, pikosekunneista vuosikymmeniin. Näin voimme taata ydinlaitteiden rakenteellisen kestävyyden niiden koko käyttöiän ajan.

Ydinenergia on pahasti leimautunut historiallisten harha-askelten ja tuntemattomaan kohdistuvan pelon takia. Roolissani Aalto-yliopiston professorina haluaisin auttaa lieventämään joitakin säteilyä koskevista peloista. Me unohdamme usein, että olemme jatkuvasti alttiina pienille säteilymäärille, jotka ovat peräisin luonnollisista lähteistä ympäristössämme.

Uskon, että olemme muutoksen kynnyksellä, pääasiassa ilmastonmuutokseen liittyvien kysymysten takia. Tunteet tulevat siis muuttumaan, kun yhteiskunta ymmärtää ydinenergian olevan puhdas ja käytännöllisesti katsoen loputtoman runsas energialähde.

Yhteystiedot:

  • ±Êä¾±±¹¾±³Ù±ð³Ù³Ù²â:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Vasemmassa kuvassa immuniteetti on paikallinen, kun oikeassa kuvassa se on satunnainen. Kuva: Jari Saramäen tutkimusryhmä, Aalto-yliopisto.
Tutkimus ja taide Julkaistu:

Tuore tutkimus osoittaa: Pandemioissa laumaimmuniteetti ei jakaudu tasaisesti

Pandemioiden torjunnassa ihmisten välisten sosiaalisten verkostojen ymmärtäminen on yhtä tärkeää kuin tietää, kuinka moni on immuuni.
Hehkuva kaksosprosessori pimeällä emolevyllä, futuristisia valotehosteita ja yksityiskohtaista piirikaavassa.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Kvanttiennätys: kubitti pysyi koherenttina millisekunnin ajan

Kvanttilaskennan tehokkuusloikkaa ennakoivan tuloksen tekijät kannustavat muita tutkimusryhmiä toisintamaan kokeen.
Ilmakuva rannikkokaupungista, jossa on lukuisia rakennuksia, venesatama ja veneitä. Kaupunkia ympäröi vesi ja puut.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Tutkimus: Uusien rakennusten päästöistä 70 prosenttia tulee rakentamisesta – eikä sitä huomioida tarpeeksi

Energiatehokkuus ja uusiutuvan energian käyttö ovat vähentäneet uudisrakennusten elinkaaripäästöjä, mutta rakentamisen päästöt eivät ole laskeneet. Viheralueiden vaaliminen ja puurakentamisen suosiminen tekisi rakentamisesta kestävämpää, korostavat tutkijat.
Kaavio, joka näyttää metasurfaceen jäähdytys- ja lämmitystehosteet, esimerkkejä valkoisista ja harmaista metasurfaces talvella ja pilvissä.
Tutkimus ja taide Julkaistu:

Tutkijat keksivät väriä ja lämpötilaa vaihtavan nanopilven, joka hämää lämpökameroita

Luonnon innoittamat metapinnat toimivat kuin pilvi mahdollistaen päiväsaikaan viilennyksen, lämmityksen ja lämpönaamioinnin – kaikki yhdessä ratkaisussa.