ɫɫ

Uutiset

Ainutlaatuinen menetelmä mahdollistaa elävien solujen ja mikro-organismien voimien mittaamisen

Menetelmän avulla voidaan löytää keinoja, joilla torjua esimerkiksi infektiosairauksia tai estää biologisten kalvojen muodostuminen lääketieteellisiin implantteihin.
A nematode worm held in a micropipette
Mikropipettivoima-anturi optisen mikroskoopin alapuolella. Kuva: Oliver Bäumchen / MPIDS

Tutkijat ovat kehittäneet mukautumiskykyisen menetelmän erilaisten mikrokokoisten organismien synnyttämien voimien mittaamiseen. Tutkimusmenetelmän periaatteet on julkaistu arvostetussa kansainvälisessä Nature Protocols -ä.

Elävien solujen ja mikro-organismien synnyttämien voimien mittaamiseen tarkoitetun mikropipettivoima-anturi -menetelmän kehittämistä kuvaillaan Aalto-yliopiston tutkijatohtorin Matilda Backholmin ja Max Planck–instituutin tutkimusryhmän johtajan, tutkijatohtori Oliver Bäumchenin yhteisessä tutkimustyössä.

”Mikropipettivoima-anturin toimintaperiaate on hyvin yksinkertainen: kalibroidun mikropipetin poikkeamaa optisesti tarkastelemalla voidaan pipettiin kohdistuvat voimat mitata suoraan”, Matilda Backholm sanoo.

Elävän solun tai mikro-organismin synnyttämät voimat ovat hyvin pieniä, alle muutaman nanonewtonin. Nämä voimat ovat kuitenkin riittävät, jotta biologiset solut voivat tarttua johonkin pintaan tai mikrobit voivat liikkua kohti ravintoaineita.

”Mikropipetin avulla voimme napata elävän solun samalla tavalla kuin in vitro -hedelmöityksessä ja tutkia mekaanisia voimia mittaamalla pipetin poikkeaman. Hyödynnämme mittauksessa fysiikan standardimittaustekniikan eli atomivoimamikroskoopin perustana olevia mittausperiaatteita”, kertoo Oliver Bäumchen.

Mikropipetti on ontto lasineula, jonka paksuus vastaa korkeintaan ihmisen hiuksen läpimittaa. Menetelmän merkittävimpiä etuja on, että sitä voidaan soveltaa monenlaisiin biologisiin järjestelmiin yksittäisistä soluista aina millimetrin kokoisiin mikro-organismeihin. Matilda Backholm mainitsee myös toisen merkittävän edun.

”Huipputason mikroskoopilla voimme tarkastella mikro-organismin muotoa ja liikettä korkealla optisella resoluutiolla ja mitata samalla voimia.”

Biologisten solujen on elääkseen ja jakaantuakseen kyettävä sopeutumaan ympäristönsä olosuhteisiin. Solut saattavat kiinnittyä pintoihin ja muihin soluihin ja muodostaa biologisen kalvon, joka suojaa soluyhteisöä ulkoiselta hyökkäykseltä. Monet mikro-organismit pystyvät liikuttamaan itseään aktiivisesti mönkimällä pintaa pitkin tai uimalla esimerkiksi nesteessä kohti ravinnonlähdettä.

Solu tai mikro-organismi säilyy mittauksen aikana rikkomattomana ja elävänä, minkä ansiosta pystytään testaamaan solun tai mikro-organismin reaktiota lääkeaineisiin, ravintoaineisiin, lämpötilaan ja muihin ympäristötekijöihin. Matilda Backholm mainitsee, että menetelmän avulla voidaan edistää biolääketieteellisiä ja bioteknologisia sovelluksia.

”Mikropipettivoima-anturitekniikka voi olla avuksi, kun pyritään tunnistamaan lääkkeitä, joilla voidaan torjua infektiosairauksia ja estää biologisten kalvojen muodostuminen lääketieteellisiin implantteihin.”

äپٴDz:

Artikkeli: 

Matilda Backholm
Tutkijatohtori
Teknillisen fysiikan laitos, Aalto-yliopisto
matilda.backholm@aalto.fi                             

Video: Esimerkki mikropipettivoima-anturimittauksesta uivalla mikro-organismilla. Kuvaaja:Matilda Backholm / Aalto -yliopisto. Videon muut kuvat ja data: Rafael Schuman.

Tietoa eläinten käyttämisestä tutkimuksessa
  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

arotor adjustable stiffness test setup
۳ٱ𾱲ٲö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Tutkimus ja taide Julkaistu:

TAIMI-hanke rakentaa tasa-arvoista työelämää – kuusivuotinen konsortiohanke etsii ratkaisuja rekrytoinnin ja osaamisen haasteisiin

Tekoäly muuttaa osaamistarpeita, väestö ikääntyy ja työvoimapula syvenee. Samalla kansainvälisten osaajien potentiaali jää Suomessa usein hyödyntämättä. Näihin työelämän haasteisiin vastaa Strategisen tutkimuksen neuvoston rahoittama kuusivuotinen TAIMI-hanke, jota toteuttaa laaja konsortio.
Unite! Seed Fund 2026: Hakemus alkaa 20. tammikuuta. Hakemukset avoinna opiskelijatoimintaan, opetukseen ja tutkimukseen.
۳ٱ𾱲ٲö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026

Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Nimitykset Julkaistu:

Deepika Yadav hyödyntää teknologiaa naisten terveyden parantamiseksi

Deepika Yadav aloitti äskettäin apulaisprofessorina Aalto-yliopiston tietotekniikan laitoksella. Hän erikoistuu ihmisen ja tietokoneen väliseen vuorovaikutukseen (HCI) sekä vuorovaikutussuunnitteluun terveyden ja hyvinvoinnin alalla.