ɫɫ

Uutiset

Vihapuhetta tunnistavat tekoälyt menevät sekaisin ”rakkaudesta”

Tutkijat osoittivat, että sosiaalisessa mediassa ja verkkopalveluissa käytettävät vihapuheentunnistimet ovat helposti ihmisten huijattavissa.
Google Perspective arvioi verkkokommentteja loukkaavuuden perusteella. Vihapuheeksi alun perin tunnistettu lause läpäisee seulan, kun se sotketaan kirjoitusvirheellä ja sanalla ’rakkaus’.

Vihapuheen ja loukkaavan kommentoinnin määrä verkossa vain kasvaa. Sen hillitsemiseksi tarvitaan automaattisia työkaluja, jotka tunnistavat verkkopalvelujen sääntöjen vastaisen tai jopa laittoman sisällön.

Nyt Aalto-yliopiston on kuitenkin löytänyt parhaistakin koneoppimiseen perustuvista vihapuheentunnistimista merkittäviä heikkouksia. Käyttäjien on yllättävän helppo kiertää vihapuheen suitsemiseen kehitettyjä tekoälytyökaluja. Tarkoituksellinen tai tahaton huono kielioppi ja kirjoitusvirheet voivat tehdä vihanlietsonnasta ja loukkauksista tekoälylle vaikeita tunnistaa.

Ryhmä kokeili seitsemän uuden tunnistamistyökalun tarkkuutta. Kaikki reputtivat testit.

Nykyaikaiset luonnollisen kielen prosessointiin käytetyt mallit pystyvät luokittelemaan tekstiä merkkien, sanojen ja lauseiden piirteiden perusteella. Kun mallit joutuvat analysoimaan tekstidataa, jollaista ei ole käytetty niiden opettamiseen, tulosten laatu alkaa kärsiä.

”Lisäsimme vihapuheeksi tai loukkaavaksi määriteltyjen kommenttien sekaan kirjoitusvirheitä, muokkasimme sanojen rajoja tai lisäsimme joukkoon neutraaleja sanoja. Välilyöntien poistaminen sanojen välistä osoittautui englanninkielisen sisällön manipuloinnissa tehokkaimmaksi. Kaikkia keinoja yhdistelemällä saimme jopa Googlen kommenttien arvottamiseen käyttämän Perspective-työkalun sekaisin”, kertoo Tommi Gröndahl, Aalto-yliopiston tohtorikoulutettava.

Google Perspective luokittelee kommenttien loukkaavuutta tai ”toksisuutta” eri tekstianalyysin menetelmien avulla. Vuonna 2017 Washingtonin yliopiston tutkijat osoittivat, että Perspectiveä voi kuitenkin huijata lisäämällä tekstiin pieniä kirjoitusvirheitä.

Gröndahl havaitsi kollegoineen, että Perspective on sittemmin oppinut tunnistamaan myös kirjoitusvirheet, mutta se on edelleen huijattavissa muunlaisella manipuloinnilla, esimerkiksi poistamalla välilyöntejä ja lisäämällä harmittomia sanoja, kuten love, ’rakkaus’.

Perspectiven ja monen muun edistyneen vihapuheentunnistimen seulan läpäisi esimerkiksi lause ”I hate you” (”minä vihaan sinua”), kun se muokattiin muotoon ”Ihateyou love”.

Tutkijat huomauttavat, että asiayhteys määrittää pitkälti sen, tulkitaanko yksittäinen kommentti vihaksi vai vain asiattomaksi tai mauttomaksi. Vihapuhe on subjektiivista ja kontekstisidonnaista, ja tutkijoiden mukaan pelkät koneelliset tekstianalyysimenetelmät eivät riitä sen tarkkaan tunnistamiseen.

”Ihmiset muuttavat toimintaansa ja alkavat kokeilla eri tapoja kirjoittaa, koska he haluavat välttää kiinnijäämistä. Ollakseen tehokas tekoäly tarvitsee avukseen ihmisen tekemää tulkintaa”, uskoo tutkimusryhmän johtaja, Aalto-yliopiston professori N. Asokan.

Tekstiä analysoivien koneoppimismallien kehittämisessä tulisi tutkijoiden mukaan kiinnittää huomiota mallien opettamiseen käytettävän datan laatuun ja monipuolisuuteen, eikä niinkään mallien rakenteiden hiomiseen.

Ryhmän tulokset osoittavat myös, että vihapuheentunnistimet voisivat olla nykyistä tarkempia, jos ne analysoisivat tekstiä yksittäisten merkkien ja niiden yhdistelmien tasolla. Lisäksi kommenttien kontekstin luokittelua pitäisi saada hienovaraisemmaksi, jotta mallit osaisivat erottaa toisistaan esimerkiksi rasismin, seksismin ja henkilökohtaiset hyökkäykset.

Tutkimus tehtiin yhteistyössä Aalto-yliopiston Secure Systems -ryhmän ja Padovan yliopiston tutkijoiden kanssa. Tulokset esitellään lokakuussa ACM AISec -konferenssissa Torontossa.

Ryhmän artikkeli on osa Aalto-yliopiston Secure Systems -ryhmän , joka tutkii tekstianalyysin keinoin valheellisen tai vilpillisen sisällön tunnistamista verkossa.

Tutkimusartikkeli:

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, N.Asokan:
All You Need is "Love": Evading Hate-speech Detection.

äپٴᲹ:
Tommi Gröndahl, tohtorikoulutettava
Aalto-yliopisto

tommi.grondahl@aalto.fi
puh. 0400 426 523

N. Asokan, professori
Aalto-yliopisto

n.asokan@aalto.fi
puh. 050 483 6465

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

arotor adjustable stiffness test setup
۳ٱ𾱲ٲö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Tutkimus ja taide Julkaistu:

TAIMI-hanke rakentaa tasa-arvoista työelämää – kuusivuotinen konsortiohanke etsii ratkaisuja rekrytoinnin ja osaamisen haasteisiin

Tekoäly muuttaa osaamistarpeita, väestö ikääntyy ja työvoimapula syvenee. Samalla kansainvälisten osaajien potentiaali jää Suomessa usein hyödyntämättä. Näihin työelämän haasteisiin vastaa Strategisen tutkimuksen neuvoston rahoittama kuusivuotinen TAIMI-hanke, jota toteuttaa laaja konsortio.
Unite! Seed Fund 2026: Hakemus alkaa 20. tammikuuta. Hakemukset avoinna opiskelijatoimintaan, opetukseen ja tutkimukseen.
۳ٱ𾱲ٲö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026

Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.
Suuri rahtialus, joka on lastattu värikkäillä konteilla, purjehtii sinisen meren yli osittain pilvisen taivaan alla.
Tutkimus ja taide Julkaistu:

Tutkimus: Polttomoottori voi saavuttaa päästöttömän palamisen ja kaksinkertaisen hyötysuhteen

Argonia hyödyntävä uusi palamiskonsepti voi poistaa polttomoottoreiden typpioksidipäästöt kokonaan ja nostaa hyötysuhteen kaksinkertaiseksi dieselmoottoreihin verrattuna.