色色啦

News

The next generation of power electronics? Gallium nitride doped with beryllium

Physicists at Aalto University have made a breakthrough in revising methods largely discarded 15 years ago.
Sample chamber of the positron accelerator. Photo: Hanna Koikkalainen

They have discovered a microscopic mechanism that will allow gallium nitride semiconductors to be used in electronic devices that distribute large amounts of electric power.

The trick is to be able to use beryllium atoms in gallium nitride. Gallium nitride is a compound widely used in semiconductors in consumer electronics from LED lights to game consoles. To be useful in devices that need to process considerably more energy than in your everyday home entertainment, though, gallium nitride needs to be manipulated in new ways on the atomic level.

鈥淭here is growing demand for semiconducting gallium nitride in the power electronics industry. To make electronic devices that can process the amounts of power required in, say, electric cars, we need structures based on large-area semi-insulating semiconductors with properties that allow minimising power loss and can dissipate heat efficiently. To achieve this, adding beryllium into gallium nitride 鈥 or 鈥榙oping鈥 it 鈥 shows great promise,鈥 explains Professor Filip Tuomisto from Aalto University.

Experiments with beryllium doping were conducted in the late 1990s in the hope that beryllium would prove more efficient as a doping agent than the prevailing magnesium used in LED lights. The work proved unsuccessful, however, and research on beryllium was largely discarded.

Working with scientists in Texas and Warsaw, researchers at Aalto University have now managed to show 鈥 thanks to advances in computer modelling and experimental techniques 鈥 that beryllium can actually perform useful functions in gallium nitride. The article published in Physical Review Letters shows that depending on whether the material is heated or cooled, beryllium atoms will switch positions, changing their nature of either donating or accepting electrons.

鈥淥ur results provide valuable knowledge for experimental scientists about the fundamentals of how beryllium changes its behaviour during the manufacturing process. During it 鈥 while being subjected to high temperatures 鈥 the doped compound functions very differently than the end result,鈥 describes Tuomisto.

If the beryllium-doped gallium nitride structures and their electronic properties can be fully controlled, power electronics could move to a whole new realm of energy efficiency.

鈥淭he magnitude of the change in energy efficiency could as be similar as when we moved to LED lights from traditional incandescent light bulbs. It could be possible to cut down the global power consumption by up to ten per cent by cutting the energy losses in power distribution systems,鈥 says Tuomisto.

Contact:

Professor Filip Tuomisto
tel. +358 50 3841 799
filip.tuomisto@aalto.fi

(journals.aps.org)

  • Updated:
  • Published:
Share
URL copied!

Read more news

Alusta pavilion. Photo: Elina Koivisto
Campus, Research & Art Published:

Alusta pavilion moved to the Aalto Campus

The giant insect hotel, Alusta pavilion invites pollinators and other species, also humans to get together.
Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saram盲ki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete 鈥 and that understanding how people are connected could be just as important as knowing how many are immune.