ɫɫÀ²

News

Spectral library reveals how boreal trees reflect solar radiation

An internationally significant spectral library helps in the interpretation of satellite images and in the assessment of the effects of forests on climate.

Researchers measured a total of more than 1 000 spectra from needle and leaf samples from arboretums and botanical gardens in the Helsinki region. Photo: Aarne Hovi

The number of Earth Observation satellites monitoring the environment is growing fast. New satellites are capable of distinguishing increasingly narrow bands of wavelengths and making increasingly frequent observations of forests globally. This opens up new opportunities in monitoring the state of forests and any changes in it.

However, measurements on the capability of different types of trees or plants to reflect solar radiation are required from the Earth’s surface as reference material to support the interpretations. Reference material can partly be replaced by physical models for which information on the optical properties of the basic components, leaves and needles, is needed. The researchers of Aalto University’s spectral laboratory have now compiled an internationally significant spectral library on the optical properties of the tree species in the boreal (northern) coniferous forests.

‘We measured a total of more than 1 000 spectra from needle and leaf samples from arboretums and botanical gardens in the Helsinki region. We managed to get a total of 25 tree species to the spectral library. Many commercially important species from both North America and Eurasia are included, such as the Siberian larch and the black spruce and the white spruce, which are both common in Canada’, explains postdoctoral researcher Aarne Hovi.

Trees that reflect more have cooling effects

The researchers showed that the spectral differences between different tree species are the greatest at the end of the shortwave-infrared region, the range of wavelengths that are longer than those visible to the human eye. The result benefits studies aimed at identifying different tree species from remote sensing material, as some of the current satellites are already capable of measuring the end of the shortwave-infrared region.

In addition to the interpretation of satellite material, the measured spectra can be used in the assessment of effects of forests on climate. For example, very little material has until now been available for modelling the forest albedo. Albedo means proportion of solar radiation reflected by the Earth’s surface back to space. The new spectral library makes it possible to examine the role of different tree species in the mitigation or acceleration of climate change. What this means in practice is that trees that are the most reflective could be favoured to increase the cooling effects on climate.

‘In the spectral laboratory, we are currently developing methods for increasing the accuracy of spectral measurements and speeding them up. This enables, for example, the monitoring the effects of different environmental factors on plants’ growth or the health of plants from space’, says Aarne Hovi.

‘The entire material can also be accessed openly, which increases the possibilities to use it in the development of interpretation methods for satellite images.’

Further information:

Aarne Hovi, Postdoctoral Researcher,
tel. +358 50 406 4147
aarne.hovi@aalto.fi

Miina Rautainen, Assistant Professor, Head of the research group
miina.a.rautiainen@aalto.fi 

The material is available in the international SPECCHIO database ().

A scientific article has been published on the topic:

  • Updated:
  • Published:
Share
URL copied!

Read more news

Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto’s collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.