ɫɫÀ²

News

Serious shortcomings in aging tests of new solar cell materials

Researchers at Aalto University have found that only a fraction of stability tests done on new types of solar cells meet proper requirements. Tests lack common standards and should have been done in real-world conditions and in groups of several cells.
In studies on the ageing of perovskite solar cells and the dye cells in the picture, a sufficiently large number of samples is one of the prerequisites for quality. Photo: Valeria Azovskaya, Materials Platform, Aalto University.

Perovskite and dye-sensitized solar cells have been suggested as energy efficient and cost-effective challengers to silicon solar cells currently on the market. So far, the development of challenger cells has focused mainly on studying and improving their efficiency. In order for the cells to become commercially viable, however, the cells need to have a sufficient life-span, not only be efficient.

Researchers at Aalto University have analysed 261 ageing tests conducted on perovskite and dye-sensitised solar cells. Major shortcomings were discovered in both how the results had been reported and how tests had been implemented.

'In about half of the ageing studies, the data was published only for one solar cell. Studying only one cell does not yield a sufficient amount of data to reliably compare how different materials age, that is, lose efficiency over time,’ says Doctoral Student Armi Tiihonen.

The researchers also found other deficiencies in the stability studies. Only a third of tests reported the intensities of visible and UV light, the humidity and temperature. Most of the tests – 52 per cent – did not mention the intensity of the UV light. UV light is a significant stress factor for most types of solar cells, shortening the cells’ lifetimes more than pure visible light.

About half of the ageing tests had been performed solely in dark conditions. Only 15 tests had been conducted outdoors and three tests were made using modules comprising several cells connected together. This goes against the principle of testing the cells in conditions in which they will be used, which is a requirement for commercialisation.

Research field requires more courage and closer cooperation

The inadequately reported test conditions reduce the reliability of the results and slow down the development of the new solar cell technologies. Aalto researchers hope that a more daring approach could be found in the field so that tests on ageing could also be implemented in actual conditions in which the cells will also be used in energy production.

'The field needs common standards. High-quality, well-reported, and standardised tests would reinforce the confidence of industry and investors in the technologies,’ says Docent Kati Miettunen who directed the work.

The researchers have written a detailed checklist for doing high-quality aging tests and how to take testing conditions into consideration and how to select the measurements to be carried out during testing.

'It would be important to assess already in advance how many cells are needed for a statistically valid result,’ says Tiihonen.

The team also proposes organising a series of conferences for establishing common guidelines and standards for ageing tests. It will require close cooperation with other players in the field. For instance, in silicon cell research, the standards have been set by commercial entities, whereas the standards for new organic solar cells made out of materials such as conductive polymers are efforts of research groups.

'Our research is also an open invitation for discussion. We hope that cooperation among the international research community will increase in future,' Tiihonen adds.

In addition to Armi Tiihonen and Kati Miettunen, members of the research group include Janne Halme, Sakari Lepikko, Aapo Poskela and Peter Lund. The article is published in Energy & Environmental Science, the most respected journal in the field of energy.

Further information:

Armi Tiihonen
Doctoral Student
Aalto University
armi.tiihonen@aalto.fi
tel. +358 50 4683431

Kati Miettunen
Docent
Aalto University
kati.miettunen@aalto.fi
tel. +358 50 3441729                      

Article:

  • Updated:
  • Published:
Share
URL copied!

Read more news

A classroom at Aalto University with a lecturer in a green shirt and students seated in front of a presentation screen.
Press releases Published:

Annual meeting of textile chemistry group held

August 8, 2025 – The Textile Chemistry Group convened its Annual Meeting on Friday, August 8, bringing together researchers, doctoral candidates, master’s students, and interns to share their latest work in advancing sustainable textile technologies. The meeting was inaugurated and chaired by Professor Ali Tehrani, Head of the Textile Chemistry Group, who welcomed all members and emphasized the importance of collaborative research in shaping the future of the textile industry.
Alusta pavilion. Photo: Elina Koivisto
Campus, Research & Art Published:

Alusta pavilion moved to the Aalto Campus

The giant insect hotel, Alusta pavilion invites pollinators and other species, also humans to get together.
Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.