ɫɫÀ²

News

Scientists test how wind turbines hold up to frozen flows in world’s largest indoor ice tank

Understanding the fundamentals of what happens when turbines meet ice could finally bring off-shore wind farms into chillier waters

In the great outdoors, ice can form, break, melt and refreeze many times over a season. Add the realities of a warming climate, and predicting how tons of frozen H20 behave is tricky business.

An international team from Aalto University, Delft University of Technology, and Siemens Gamesa Renewable Energy is working to find out just what happens when 200-metre tall wind turbines meet seriously frosty conditions, like those seen in Northern Europe’s Baltic Sea, North America’s Great Lakes or China’s Bohai Bay. At the moment, off-shore wind farms are largely located in waters that don’t enter deep freezes.

‘We don’t actually know what kinds of force and pressure ice creates on off-shore wind turbines,’ says Arttu Polojärvi, assistant professor of ice mechanics at Aalto University. ‘This is the first time anyone has carried out fully controlled model-scale laboratory experiments to find out.’

Aalto Ice Tank.jpg
Photo: Anna Berg/Aalto University

Ice-induced vibrations, the tiny or large shakes that occur when ice collides with infrastructure, are one of the major concerns for bringing the massive turbines into ice-infested areas.

Aalto Ice Tank, the world’s largest indoor ice basin measuring 40 by 40 metres, is one of the only places globally where researchers can customize huge slabs of ice and precisely test how they interact with these kinds of human-made structures.

‘What’s special about our experiments that we’ve tested at -11 degrees Celsius to make sure the ice is strong and breaks realistically,’ explains Hayo Hendrikse, assistant professor in ice-structure interaction at TU Delft.

The physical testing was carried out with a 30:1-scale model pile, with the help of numerical modelling to simulate wind and other conditions a wind turbine would encounter at sea. In real-life terms, the load exerted from the ice during the experiments would be around 8 meganewtons – that’s the combined thrust of 16 of the largest aircraft engines.

‘The preliminary results show something that we haven’t seen before in other structures, like lighthouses, channel markers, or oil and gas platforms. A wind turbine is very tall and slender and can move a lot; what we’ve seen in our experiments seems to be a totally new type of ice-induced vibration,’ says Hendrikse.

The Shiver project team is now working to create robust numerical models based on the data collected in order to test various scenarios that a wind turbine might encounter in chilly conditions over half a century of service. The and is now published in the journal Data-in-Brief.

The research has been funded by Siemens Gamesa Renewable Energy and TKI Wind Op Zee. Polojärvi has recently received funding from The Academy of Finland to lead further development and create a modellingengine for forecasting future marine environmental and ice conditions. The aim is that the modelling engine will also aid in the the design and optimisation of cold-region offshore wind farms.

More information:

Available to comment on how ice breaks, related challenges of climate change and Aalto Ice Tank:

Arttu Polojärvi
Assistant professor, ice mechanics
Department of Mechanical Engineering
Aalto University
Tel: +358504301682
arttu.polojarvi@aalto.fi

Available to comment on ice-induced vibration of offshore wind turbines and the experiments detailed above:

Hayo Hendrikse
Assistant professor, ice-structure interaction
Delft University of Technology
Tel: + 31152788223
H.Hendrikse@tudelft.nl

  • Updated:
  • Published:
Share
URL copied!

Read more news

An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Forest with green mossy ground and thin trees, a square measuring frame is set on the moss.
Press releases Published:

Satellite images reveal the positive effects of restoration in the northern hemisphere peatlands

Satellite data spanning over 20 years shows that the temperature and albedo of restored peatlands begin to resemble those of intact peatlands within about a decade
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.