色色啦

News

Satellite data help reveal the loss of tropical rainforests

A recent study piloted a new monitoring method that could help in detecting illegal deforestation and estimating CO2 emissions caused by forest loss.
Example deforestation maps (bottom) are produced using the satellite data and proposed algorithm. The maps show the time of deforestation events aggregated by years. The high resolution images (top) for validation purpose were obtained through Digital Globe viewing service.

Deforestation is estimated to account for 10 percent of global carbon dioxide emissions, making it a significant contributor to climate change. Efficient monitoring of forest areas is vital for preserving the planet鈥檚 carbon sinks.

In a recent study published in Forests, researchers from Aalto University and International Institute for Applied Systems Analysis piloted using dense time series of observations from the freely available Landsat satellite data for a continuous monitoring of forest cover in tropical rainforests. The method was tested in the Kalimantan mega-island in Indonesia, a global hotspot of deforestation.

Researchers developed a simple, generic and data-driven deforestation detection algorithm, 
which discovers anomalies from satellite observations by comparing them to the stable historical period in the time series of satellite data. An anomalous observation is considered as a potential deforestation event, which is confirmed if a series of anomalous observations is detected consecutively for a pre-determined number of times.

Compared to previous monitoring methods, such as complex machine learning algorithms, the new algorithm is more easily adjustable to local conditions. It can be set to prioritise temporal or spatial accuracy. Thus, it could be applied in law enforcement, where an immediate action is required to stop the newly-detected illegal deforestation event from spreading to the surrounding forest area. Another use case is in carbon accounting, where spatial accuracy is important in estimating the size of deforested area to in turn estimate the amount of greenhouse gas emissions. 

鈥漌e envision to provide not only the output of the monitoring system, such as a map of deforestation alerts, but also an easy user interface to the algorithm, which the local management staff in the tropics can tune as they gain experience in applying it to local forest conditions. Local capacity development, in both knowledge and infrastructure, is crucial for successful forest monitoring activities鈥, said Hadi, a researcher from the Geoinformatics Research Group of Aalto University. 

The study was published in Forests in July.

The article:
Hadi; Krasovskii, A.; Maus, V.; Yowargana, P.; Pietsch, S.; Rautiainen, M. Monitoring Deforestation in Rainforests Using Satellite Data: A Pilot Study from Kalimantan, Indonesia. Forests 2018, 9, 389.
https://doi.org/10.3390/f9070389

More information:

Hadi, doctoral candidate 
Aalto University School of Engineering
Department of Built Environment
hadi.hadi@aalto.fi
twitter @HadiEOind

  • Updated:
  • Published:
Share
URL copied!

Read more news

An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saram盲ki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete 鈥 and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.
Aerial view of a coastal city with numerous buildings, a marina, and boats docked. Trees and water surround the city.
Press releases, Research & Art Published:

Study: 70% of emissions from new buildings come from construction 鈥 and this is often overlooked

While energy efficiency and the use of renewable energy have reduced the life cycle emissions of new buildings, emissions from construction have not decreased. Preserving green areas and prioritizing timber construction would make construction more sustainable, researchers emphasize.