ɫɫÀ²

News

Researchers of non-wetting surfaces and meanings of Renaissance fashion awarded €2 million EU grants

The European Research Council has awarded €2 million to the projects of Professor Robin Ras and Professor Paula Hohti.

A surface is superhydrophobic when it repels water to the degree that droplets do not stick to the surface and roll off easily. Photo Mika Latikka.

The European Research Council (ERC) has awarded ERC Consolidator Grants of about €2 million to the five-year research projects of Professor Robin Ras and Professor Paula Hohti from Aalto University.

In his Superslippery Liquid-Repellent Surfaces project, Robin Ras aims to fabricate new surfaces and to advance their potential for technological applications for example in anti-icing and in the prevention of bio-fouling (when microorganisms or other biological materials accumulate on a surface).

'In this ERC project,' says Ras, 'I aim to substantially progress the development of new types of enhanced non-wetting surfaces. Additionally, I will advance characterization techniques and explore new applications for such surfaces.'

Superhydrophobic surfaces have tremendous application potential because of their anti-icing and anti-bio-fouling properties. For example, clothes, camera lenses, and phones could be kept dry and clean, as well as cars, ships, airplanes, and solar cells could stay clean of contamination and ice. Another potential field of application is microfluidics, where small volumes of liquid are flowing through channels, and cleanliness of the surfaces is very important. Superhydrophobic surfaces could be implemented, for example, in medical diagnostic lab-on-a-chip devices for blood testing and analysis.

Professor Paula Hohti’s research project, Re-fashioning the Renaissance: Popular Groups, Fashion and the Material and Cultural Significance of Clothing in Europe, 1550-1650, investigates transformations and dissemination of fashion in sixteenth and seventeenth century Europe, especially among lower social groups in Italy and Scandinavia, and evaluates the broader significance of these changes in Western European fashions. They will explore the potentials and meaning of a new material-based approach for studies of historical dress and fashion.

(erc.europa.eu)

More information

Professor Robin Ras
Department of Applied Physics
Centre of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials
Tel. +358 50 432 6633
firstname.lastanem@aalto.fi

Professorr Paula Hohti
Department of Arts
Tel. +358 50 438 4180
paula.hohti@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.