ɫɫÀ²

News

Researchers developed manufacturing method for microbatteries with organic electrode materials

Lithium terephthalate is a recently found anode material for a lithium-ion battery.

Researchers tested material on coin cells. Photo Mikko Raskinen / Aalto University

With people wanting to use smaller electronic devices, smaller energy storage systems are needed. Researchers of Aalto University in Finland have demonstrated the fabrication of electrochemically active organic lithium electrode thin films, which help make microbatteries more efficient than before. Researchers used a combined atomic/molecular layer deposition (ALD/MLD) technique, to prepare lithium terephthalate, a recently found anode material for a lithium-ion battery.

When microbatteries are manufatured, the key challenge is to make them able to store large amounts of energy in a small space. One way to improve the energy density is to manufacure the batteries based on three-dimensional microstructured architectures. This may increase the effective surface inside a battery- even dozens of times. However, the production of materials fit for these has proven to be very difficult.

– ALD is a great method for making battery materials fit for 3D microstructured architectures. Our method shows it is possible to even produce organic electrode materials by using ALD, which increases the opportunities to manufacture efficient microbatteries, says doctoral candidate Mikko Nisula from Aalto University.

Doctoral canditate Mikko Nisula holds in his hand a sample on a steel substrate. Behind the hand there is an  ALD reactor.
Photo Mikko Raskinen / Aalto University

The researchers' deposition process for Li-terephthalate is shown to comply well with the basic principles of ALD-type growth, including the sequential self-saturated surface reactions, which is a necessity when aiming at micro-lithium-ion devices with three-dimensional architectures. The as-deposited films are found to be crystalline across the deposition temperature range of 200−280 °C, which is a trait that is highly desired for an electrode material, but rather unusual for hybrid organic−inorganic thin films. An excellent rate capability is ascertained for the Li-terephthalate films, with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate. This yields highly stable structures with a capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

The study about the method has now been published in the latest edition of Nano Letters.

For more information:

Doctoral candidate Mikko Nisula, School of Chemical Technology, Aalto University
mikko.nisula@aalto.fi

Professor Maarit Karppinen, School of Chemical Technology, Aalto University maarit.karppinen@aalto.fi, tel. +358 50 384 1726

Article:

  • Updated:
  • Published:
Share
URL copied!

Read more news

A group of people standing on steps in front of a large wooden building.
Press releases Published:

Textile Chemistry Group Visits Valmet Fiber Technology Center for TexirC Project Meeting

August 18, 2025 – The Textile Chemistry research group took part in the TexirC project meeting hosted at Valmet’s Fiber Technology Center, bringing together partners to review progress and exchange results.
A classroom at Aalto University with a lecturer in a green shirt and students seated in front of a presentation screen.
Press releases Published:

Annual meeting of textile chemistry group held

August 8, 2025 – The Textile Chemistry Group convened its Annual Meeting on Friday, August 8, bringing together researchers, doctoral candidates, master’s students, and interns to share their latest work in advancing sustainable textile technologies. The meeting was inaugurated and chaired by Professor Ali Tehrani, Head of the Textile Chemistry Group, who welcomed all members and emphasized the importance of collaborative research in shaping the future of the textile industry.
A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto’s collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.
Forest with green mossy ground and thin trees, a square measuring frame is set on the moss.
Press releases Published:

Satellite images reveal the positive effects of restoration in the northern hemisphere peatlands

Satellite data spanning over 20 years shows that the temperature and albedo of restored peatlands begin to resemble those of intact peatlands within about a decade