ɫɫÀ²

News

Researchers developed a cost-effective and efficient rival for platinum

Researchers succeeded in creating an electrocatalyst that is needed for storing electric energy made of carbon and iron.

A challenge that comes with the increased use of renewable energy is how to store electric energy.

Platinum has traditionally been used as the electrocatalyst in electrolysers that store electric energy as chemical compounds.

However, platinum is a rare and expensive metal. Now Aalto University researchers have succeeded in developing a substitute to it that is cheap and effective.

"We developed an electrocatalyst that is made of iron and carbon. Now the same efficiency that was achieved with platinum can be obtained with a less expensive material. Nearly 40 per cent of the material costs of energy storage with an electrolyser come from the electrocatalyst", says senior scientist Tanja Kallio.

The findings have just been published in the scientific journal Angewandte Chemie on 12.2.2015.

Losses decrease

The manufacturing process has been developed in cooperation with a research group led by Professor Esko Kauppinen from Aalto University School of Science. The carbon nanotube the group developed conducts electricity extremely well and serves as the support, while the now added only single carbon layer covered iron functions as the catalyst. The manufacturing process has a single stage.

In the manufacturing phase, the iron is covered with graphene.

"The method has been altered to make the electro catalyst very active. By active, we refer to the small amount of energy needed to store electric energy as hydrogen. This reduces the losses caused by chemical storage and the process is economically viable."

The research was conducted at the Aalto University School of Chemical Technology in groups led by Professor Kari Laasonen and Senior scientist Tanja Kallio in cooperation with Professor Esko Kauppinen. The research has been funded by the Aalto University AEF Programme (Aalto Energy Efficiency Research Programme).

Further information
Senior scientist Tanja Kallio
tanja.kallio@aalto.fi
tel. +358 50 5637 567

Professor Kari Laasonen
kari.laasonen@aalto.fi
tel. +358 40 5570044

  • Updated:
  • Published:
Share
URL copied!

Read more news

Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto’s collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)