色色啦

News

Novel cross-disciplinary approach for identifying complex molecular adsorbates

CEST researchers integrate Bayesian inference with scanning probe experiments to robustly detect surface adsorbate configurations

Image of atomic force microscopy
Artificial intelligence (AI) enhanced ab-initio structure search is combined with atomic force microscopy simulations (SIM) and experiments (EXP) to detect configurations of bulky 3D adsorbates.
Photo of Jari J盲rvi
CEST doctoral candidate Jari J盲rvi

Hybrid functional materials combine organic and inorganic components and have many advantageous properties. They are commonly utilized in emerging technologies, such as novel electronic devices and green energy solutions. Controlling the properties of these materials requires detailed knowledge of their atomic structure, in particular the configuration of molecular adsorbates in the hybrid organic-inorganic interface. Identifying the structure of bulky non-planar adsorbates is often unattainable, even with current state-of-the-art tools. Interpreting the structure of bulky molecules from atomic force microscopy (AFM) images is challenging, and finding the stable structures using quantum mechanical simulations is computationally intractable with conventional methods. In a recent work by Jari J盲rvi, Benjamin Alldritt, Ond艡ej Krej膷铆, Milica Todorovi膰, Peter Liljeroth and Patrick Rinke, a new cross-disciplinary method was developed to identify bulky adsorbates by combining artificial intelligence structure search with AFM simulations and experiments.

In this fresh approach, the stable model structures are first identified using the artificial intelligence tool, which was recently developed in CEST. The best candidate structures are scanned into stacks of images using AFM simulations with different heights of the microscope tip. The model structures are correlated to experiments by comparing image features in the stacks of simulated and experimental AFM images, which allows identifying the experimental configurations. In a recent article, J. J盲rvi et al. have demonstrated this method by identifying the structure of (1S)-camphor (a typical bulky molecule) on the Cu(111) surface. This material has been previously studied with AFM, but inferring the structure from the images has been inconclusive. Using this novel approach, they successfully identified three distinct configurations of (1S)-camphor on Cu(111) in the experiments.

The presented method can be applied to other adsorption structure search problems and combined with other experimental techniques. Analyzing single molecules is only the first step towards studying more complex molecular assemblies and subsequently the formation of monolayers. The acquired structural insight can help to optimize the functional properties of these materials.

The research article is published in Advanced Functional Materials and is now available online .

  • Updated:
  • Published:
Share
URL copied!

Read more news

Artistic illustration: Algorithms over a computer chip
Research & Art Published:

Aalto computer scientists in STOC 2025

Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).
A person walks past a colourful mural on a brick wall, illuminated by street lamps and electric lines overhead.
Cooperation, Research & Art, University Published:

New Academy Research Fellows and Academy Projects

A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland 鈥 congratulations to all!
Two flags at Aalto University: a pride flag and a yellow flag. A modern building and green trees are in the background.
Press releases Published:

LGBTQ-Friendly Firms More Innovative

Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.