ɫɫÀ²

News

New surfaces repel water in oil as well as oil in water

Advanced coating materials benefit marine industry, anti-corrosion efforts and many other fields.

Oil droplet in Water.  Dual superlyophobic surface keeps oil droplet separate in water when it is against the surface. Photo: Xuelin Tian, Robin Ras.

Water droplet in Water. Dual superlyophobic surface keeps water droplet separate in oil when it is against the surface. Photo: Xuelin Tian, Robin Ras.

If you drop some water on your new Teflon pan, drops can't hold firmly anywhere. The pan does not get wet but droplet rebounds in the shape of pancake. Drop some oil on the pan and it stays there better because oil, unlike water, slightly wets the surface.

Researchers of Aalto University have developed new surface materials that are extremely difficult to wet both by water and oil. Because they don't need isolating air to stay trapped between the droplet and rough surface to prevent wetting, these surface materials work even when wet by another liquid.

Researchers' novel dual superlyophobic surfaces repel water even when covered by oil and oil when covered by water. So far, this has been regarded as contradictory to each other and not expected to be present on the same surface.

Several ways to apply

‘The competitive interaction with surfaces between oil and water plays an essential role in various technological applications. Our new design strategy of surfaces can be used in many ways from self-cleaning to dirt-repellency,’ tells Xuelin Tian, who was a postdoctoral researcher in Aalto University before recently becoming a professor at Sun Yat-sen University, China.

Liquid-repellent surfaces are very important for several industries. For instance, the extreme oil repellency under water can be utilized in marine industry to fight against fouling, including oil contamination and biofouling by organisms. On the other hand, the extreme water repellency of the surfaces when covered by oil are also a great help against corrosion: moisture is effectively inhibited and corrosion can be reduced.

‘Such surfaces can be regarded as an environment-responsive material which means that its surface wettability changes with the environmental liquid it contacts. Unlike other responsive surfaces, the new surface does not rely on reconfigurable organic molecular modification, and thus offers a new strategy to make smart materials. When processed in the form of porous materials, it may be used for separation of both water-in-oil and oil-in-water emulsions, whereas common oil/water separation materials work for one type of emulsion only,’ says Assistant Professor Robin Ras from Aalto University.

Two design criteria

Researchers propose two design criteria for new surfaces: the liquid filling criterion and the steady composite interface criterion. The design criteria lead to steady trapping of airless oil and water films within surface texture. Such liquid films enable both underoil superhydrophobicity, repelling water under oil, and underwater superoleophobicity, repelling oil under water.

Surfaces are prepared by the combination of re-entrant topography and delicately matched surface chemistry.

The research article has been published in Advanced Materials.

For more information:
Dr. Robin Ras
robin.ras@aalto.fi
tel. +358 50 432 6633

Article:
Xuelin Tian, Ville Jokinen, Juan Li, Jani Sainio, Robin H. A. Ras:   Advanced Materials 2016.

  • Updated:
  • Published:
Share
URL copied!

Read more news

Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto’s collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.