ɫɫÀ²

News

New nanoparticle-based material could help detect antibiotics in water

The finding also opens up new avenues for next-generation flexible wearables and biosensors
2D-kalvo
Electron microscopy image (inset: photograph of membrane on a glass cover slip) and a schematic representation of nanoparticle membrane. Image: Nonappa / Aalto University

An international team of researchers has developed a new type of strong and elastic two-dimensional (2D) membrane. The invention could prove useful, for instance, in detecting remnants of antibiotics from water.

Two-dimensional materials are ultrathin and composed of either single- or few-layer atoms. Recently, nanoparticle-based 2D materials have gained tremendous interest among researchers and industry due to their mechanical strength, flexibility, and optical and electronic properties which could make them key components, for instance, in emerging optoelectronic devices, sensors, and next-generation computing technologies. So far, though, no commercial applications exist due to problems with both scalability and obtaining uniform products from one batch to another.

A research team led by Nonappa, associate professor at Tampere University and adjunct professor at Aalto University, has now been able to fabricate a  large 2D monolayer membrane using metal nanoparticles that surpasses some of these difficulties.

‘These membranes are mechanically robust and can be transferred on to any substrate of interest for desired applications. Our approach enables the rapid, scalable, and efficient fabrication of large-area ultrathin membranes’, Nonappa says.

Unlike routinely used nanoparticles, the team used silver nanoparticles with a precisely defined molecular structure. The macroscopic membranes were prepared using a self-assembly approach.

‘The membranes show elastic behavior, making them potentially useful, for example, in flexible transistors and memory devices in wearable electronics and displays. The experimental results on their mechanical properties are highly reproducible and reliable,’ describes postdoctoral researcher Alessandra Griffo from Saarland University.

The research team has also explored the suitability of the newly-developed membranes as substrates for detecting antibiotics in water. With the increased use of pharmaceuticals and consequent contamination of surface and groundwater with antibiotics, there is an urgent need for rapid and reliable detection.

‘We can detect extremely low amounts of antibiotics dissolved in water with a high degree of reproducibility,’ postdoctoral researcher Anirban Som from Aalto University explains.

In the future, the team will focus on adapting the membrane fabrication methods to other types of nanoparticles, utilising them as components in, for instance, flexible memory devices and smart e-skin applications.

The findings were published on 2.8.2022 in the journal .

The work results from a collaboration between the research groups of Professor Nonappa at Tampere University, Finland, Professor T. Pradeep at IIT Madras, India, Professor Olli Ikkala at Aalto University, Finland and Professor Karin Jacobs of Saarland University, Germany. The research was performed under the framework of the Academy of Finland´s  (PREIN) flagships and the LIBER Centre of Excellence.

Contact information

Nonappa
Associate Professor, Adjunct Professor
Tampere University, Aalto University
nonappa@aalto.fi 
+358 5047 28897

  • Updated:
  • Published:
Share
URL copied!

Read more news

Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)