New algorithm identifies gene transfers between different bacterial species
When mammals breed, the genome of the offspring is a combination of the parents' genomes. Bacteria, by contrast, reproduce through cell division. In theory, this means that the genomes of the offspring are copies of the parent genome. However, the process is not quite as straightforward as this due to horizontal gene transfer through which bacteria can transfer fragments of their genome to each other. As a result of this phenomenon, the genome of an individual bacterium can be a combination of genes from several different donors. Some of the genome fragments may even originate from completely different species.
In a recent study combining machine learning and bioinformatics, a new computational method was developed for modelling gene transfers between different lineages of a bacterial population or even between entirely different bacterial species. The method was used to analyse a collection of 616 whole-genomes of a recombinogenic pathogen Streptococcus pneumoniae.
The usefulness of a gene affects its transfer rate
In the study, several individual genes in which gene transfers were considered particularly common were identified. These genes also included genes causing resistance to antibiotics.
‘In the case of antibiotic-resistance genes, the number of gene transfers may be related to how useful these genes are to bacteria and to the resulting selection pressure’, says Academy Research Fellow Pekka Marttinen from the Aalto University Department of Computer Science.
‘The study will not provide a direct solution to antibiotic resistance because this would require a profound understanding of how the resistance occurs and spreads. Nevertheless, knowing the extent to which gene transfer occurs between different species and lineages can help in improving this understanding’, he explains.
The study was able to show that gene transfer occurs both within species and between several different species. The large number of transfers identified during the study was a surprise to the researchers.
‘Previous studies have shown that gene transfers are common in individual genes, but our team was the first to use a computational method to show the extent of gene transfer across the entire genome’, Marttinen says.
‘The method also makes it possible to effectively examine ancestral gene transfers for the first time, which is important in examining transfers between different species.’
published the results in February.
More information:
Academy researcher Pekka Marttinen
Aalto University, Department of Computer Science
tel. +358 44 303 0349
pekka.marttinen@aalto.fi
Artikkeli: Rafal Mostowy, Nicholas J. Croucher, Cheryl P. Andam, Jukka Corander, William P. Hanage and Pekka Marttinen: Efficient inference of recent and ancestral recombination within bacterial populations. Molecular Biology and Evolution 2017. DOI: 10.1093/molbev/msx066.
Read more news
Research Council of Finland establishes a Center of Excellence in Quantum Materials
The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors
The BEST research project is developing new types of sealing, bearing, and damping technology.
The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges
Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.