ɫɫÀ²

News

Magnetic polaron imaged for the first time

Visualization was enabled by designing a new artificial magnetic material. The finding means remarkable possibilities to materials research.

Researchers at Aalto University and Lawrence Berkeley National Laboratory have demonstrated that polaron formation also occurs in a system of magnetic charges, and not just in a system of electric charges. Being able to control the transport properties of such charges could enable new devices based on magnetic rather than electric charges, for example computer memories.

Polarons are an example of emergent phenomena known to occur in condensed matter physics. For instance, an electron moving across a crystal lattice displaces the surrounding ions, together creating an effective quasi-particle, a polaron, which has an energy and mass that differs from that of a bare electron. Polarons have a profound effect on electronic transport in materials.

Artificial spin ice systems are metamaterials that consist of lithographically patterned nanomagnets in an ordered two-dimensional geometry. The individual magnetic building blocks of a spin ice lattice interact with each other via dipolar magnetic fields.

Electron microscopy image of a small fraction of the dipolar dice lattice. The spin ice structure consists of interacting ferromagnetic nanoislands. The experimental lattice consists of several thousand nanoislands and is fabricated by electron-beam lithography.

Researchers used material design as a tool to create a new artificial spin ice, the dipolar dice lattice.

‘Designing the correct two-dimensional lattice geometry made it possible to create and observe the decay of magnetic polarons in real-time,’ says postdoctoral researcher Alan Farhan from Lawrence Berkeley National Laboratory (USA).

‘We introduced the dipolar dice lattice because it offers a high degree of frustration, meaning that competing magnetic interactions cannot be satisfied simultaneously. Like all systems in nature, the dipolar dice lattice aims to relax and settle into a low-energy state. As a result, whenever magnetic charge excitations emerge over time, they tend to get screened by opposite magnetic charges from the environment,’ explains Dr. Farhan.

The researchers at Berkeley used photoemission electron microscopy, or PEEM, to make the observations. This technique images the direction of magnetization in individual nanomagnets. With the magnetic moments thermally fluctuating, the creation and decay of magnetic polarons could be imaged in real space and time. Postdoctoral researcher Charlotte Peterson and Professor Mikko Alava at Aalto University (Finland) performed simulations, which confirmed the rich thermodynamic behavior of the spin ice system.

‘The experiments also demonstrate that magnetic excitations can be engineered at will by a clever choice of lattice geometry and the size and shape of individual nanomagnets. Thus, artificial spin ice is a prime example of a designer material. Instead of accepting what nature offers, it is now possible to assemble new materials from known building blocks with purposefully designed functionalities,’ says Professor Sebastiaan van Dijken from Aalto University.

‘This concept, which goes well beyond magnetic metamaterials, is only just emerging and will dramatically shape the frontier of materials research in the next decade,’ adds Professor van Dijken.

Research article:
Alan Farhan, Andreas Scholl, Charlotte F. Petersen, Luca Anghinolfi, Clemens Wuth, Scott Dhuey, Rajesh V. Chopdekar, Paula Mellado, Mikko J. Alava & Sebastiaan van Dijken.
Thermodynamics of emergent magnetic charge screening in artificial spin ice.
Nature Communications 7 (2016).

Contact information:

Dr. Alan Farhan
afarhan@lbl.gov
Lawrence Berkeley National Laboratory

Professor Mikko Alava
mikko.alava@aalto.fi
+358 50 413 2152
Aalto University

Professor Sebastiaan van Dijken
sebastiaan.van.dijken@aalto.fi
+358 50 316 0969
Aalto University

Advanced Light Source, Lawrence Berkeley National Laboratory, USA:
Complex Systems and Materials group, Aalto University, Finland:
Nanomagnetism and Spintronics group, Aalto University:

  • Updated:
  • Published:
Share
URL copied!

Read more news

Artistic illustration: Algorithms over a computer chip
Research & Art Published:

Aalto computer scientists in STOC 2025

Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).
A person walks past a colourful mural on a brick wall, illuminated by street lamps and electric lines overhead.
Cooperation, Research & Art, University Published:

New Academy Research Fellows and Academy Projects

A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland – congratulations to all!
Two light wooden stools, one with a rectangular and one with a rounded structure, placed against a neutral background.
Research & Art Published:

Aalto University's Wood Studio's future visions of Finland's most valuable wood are presented at the Finnish Forest Museum Lusto

Curly birch – the tree pressed by the devil – exhibition will be on display in Lusto until March 15, 2026.
Five people with a diploma and flowers.
Awards and Recognition, Campus, Research & Art Published:

Spring term open science highlight: Aalto Open Science Award Ceremony

We gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2024 and discuss open science topics with the Aalto community.