ɫɫÀ²

News

Listeners immerse themselves in audiobooks in very different ways – and this shows in the brain

In the future, a new brain research method could be used to study creativity
Tutkimuksessa arvioitiin, miten lähellä tai kaukana koehenkilöiden tuottamat sanalistaukset olivat merkityksen perusteella toisistaan. Kuva: Iiro Jääskeläinen.
estimations were made on how far the research subjects’ word lists were from each other. estimations were made on how far the research subjects’ word lists were from each other.

Researchers at Aalto University analysed how listeners immerse themselves in audiobooks by using functional magnetic resonance imaging (fMRI) and words that the story brings to mind. The study indicated that word lists resembling each other also predicted similarities in brain function.

In the study, 16 people listened to an audiobook written by Professor Iiro Jääskeläinen inside an fMRI device. After this, the same people listened to the story again in sections lasting between 3 and 5 seconds, and listed the words that came to their mind while they were listening.

For example, the following line in the story ‘went towards the bedroom door’ may, to some people, bring to mind a door handle, walking and a bedroom, while another person may recall a television, home and their favourite TV series. The visual images may also be different.

‘Instead of focusing on individual statements, the study examined immersion, or similarity in brain activity, in relation to the entire story’, Jääskeläinen says.

Word lists produced by the research subjects were assessed using a semantic tree and latent semantic analysis. In a semantic tree, dots represent concepts and arcs portray the relationships between concepts. For example, the words ‘dog’, ‘canine’ and ‘spaniel’ are close to each other in the tree, while ‘dog’ and ‘submarine’ are far apart. On the basis of this, estimations were made on how far the research subjects’ word lists were from each other.

Scientists discovered that similar words in the list predicted similarities in the test subjects’ brain activity, particularly in the area between the temporal and parietal lobe, which is important in language processing, and the visual cortex.

‘In the future, it will be interesting to see if this is caused by, for instance, cultural or personality differences’, Iiro Jääskeläinen says.

In meantime, the new method has various potential research applications: such as measuring creativity and its neural basis; or how people with different cultural backgrounds interpret the world in different ways.

Further information:

Iiro Jääskeläinen
Professor
Aalto University
iiro.jaaskelainen@aalto.fi
Phone: 050 560 9503

  • Updated:
  • Published:
Share
URL copied!

Read more news

A complex, large installation of twisted white paper structures with various spirals and curves against a dark background.
Aalto Magazine Published:

Five things: Origami unfolds in many ways

The word ori means ‘folded’ and kami means ‘paper’ in Japanese. Origami refers to both the traditional Japanese art of paper folding and to the object it produces. At Aalto University, this centuries-old technique finds applications across a variety of disciplines. Here are five examples:
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.