Graphene nanoribbons - chiral or not?

We show that the precursor geometry controls whether we form regular armchair or chiral graphene nanoribbons (GNRs). On Cu(111), bianthryl precursors (dibromo-, dichloro-, or halogen-free bianthryl) unexpectedly yield chiral GNRs. Using atomically resolved noncontact atomic force microscopy (nc-AFM), we studied the growth mechanism in detail. In contrast to the nonplanar BA-derived precursors, planar dibromoperylene (DBP) molecules do form armchair GNRs by Ullmann coupling on Cu(111), as they do on Au(111). These results highlight the role of the substrate, precursor shape, and molecule–molecule interactions as decisive factors in determining the reaction pathway. Our findings establish a new design paradigm for molecular precursors and opens a route to the realization of previously unattainable covalently bonded nanostructures.
The results are published in
Read more news

Aalto computer scientists in STOC 2025
Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).
New Academy Research Fellows and Academy Projects
A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland – congratulations to all!
Aalto University's Wood Studio's future visions of Finland's most valuable wood are presented at the Finnish Forest Museum Lusto
Curly birch – the tree pressed by the devil – exhibition will be on display in Lusto until March 15, 2026.