色色啦

News

DNA folds into a smart drug carrier

New study shows that DNA nanostructures can be programmed to function as pH-responsive cargo carriers, paving the way towards functional drug-delivery vehicles.
Sulkeutuva DNA-laite, jonka sis盲lle entsyymi j盲盲 suojaan/ Kuva: Veikko Linko, Boxuan Shen, Heini Ij盲s
Picture: Veikko Linko, Boxuan Shen and Heini Ij盲s/Aalto University

Researchers from Aalto University and the University of Jyv盲skyl盲 in Finland have developed a customized DNA nanostructure that can perform a predefined task in human body-like conditions. To do so, the team built a capsule-like carrier that opens and closes according to the pH level of the surrounding solution. The nanocapsule can be loaded鈥攐r packed鈥攚ith a variety of cargo, closed for delivery and opened again through a subtle pH increase.

'For quite some time I have wanted to build a dynamic DNA machine that would move with the help of an external stimulus, for example a biological cue. We picked up the concept of pH-responsive DNA strands from previous studies, developed the idea further, and demonstrated their applicability in a completely different setting,' says Veikko Linko, Adjunct Professor at Aalto University.

To make this happen, the team designed a capsule-like DNA origami structure functionalized with pH-responsive DNA strands. Such dynamic DNA nanodesigns are often controlled by the simple hydrogen-bonding of two complementary DNA sequences. Here, one half of the capsule was equipped with specific double-stranded DNA domains that could further form a DNA triple helix 鈥 in other words a helical structure comprised of three, not just two DNA molecules 鈥 by attaching to a suitable single-stranded DNA in the other half.

'The triplex formation can happen only when the surrounding pH of the solution is right,' explains first author of the study, doctoral student Heini Ij盲s. 'We call these pH-responsive strands 鈥減H latches鈥, because when the strands interact, they function similarly to their macroscopic counterparts and lock the capsule in a closed state. We included multiple motifs into our capsule design to facilitate the capsule opening/closing based on cooperative behaviour of the latches. The opening of the capsule is actually very rapid and requires only a slight pH increase in the solution,' she adds.

To harness the nanocapsules for transporting molecular payloads or therapeutic substances, the team designed the capsule with a cavity that could host different materials. They demonstrated that both gold nanoparticles and enzymes could be loaded (high pH) and encapsulated within the capsules (low pH) and again displayed (high pH). By monitoring the enzyme activity, the researchers found that the cargo remained fully functional over the course of the process.

'The most intriguing thing about the DNA origami capsules is that the threshold pH at which the opening and closing take place is fully adjustable by selecting the base sequences of the pH latches. We designed the threshold pH to be 7.2-7.3, close to the blood pH,' says Linko.

Further, the capsules remained functional at physiological magnesium and sodium concentrations, and in 10% blood plasma, and may continue to do at even higher plasma concentrations. Together, these findings help pave the way for developing smart and fully programmable drug-delivery vehicles for nanomedicine.

The work was carried out in Professor Mauri Kostiainen鈥檚 laboratory and led by Veikko Linko, both based at Aalto University.

The results were published in ACS Nano on 16 April 2019.

Picture:

Left: The pH-responsive DNA origami nanocapsule (blue) loaded with an enzyme (yellow color, high pH). The pH-latches have two counterparts: a double-stranded domain (orange) and a single-stranded sequence (green). Right: The DNA machine closes when pH is lowered, encapsulating the cargo with the help of triplex-forming latches. The capsule can be reopened and the cargo displayed with an increase in pH.

Links:

Article: H. Ij盲s, et al. 鈥Reconfigurable DNA Origami Nanocapsule for pH-Controlled Encapsulation and Display of Cargo.

ACS Nano2019, DOI: 10.1021/acsnano.9b01857

More information:

Veikko Linko
Adjunct Professor
Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
tel. +358 45 673 9997
veikko.linko@aalto.fi

Heini Ij盲s
Doctoral Student
Department of Biological and Environmental Science, Nanoscience Center, University of Jyv盲skyl盲, Finland
Biohybrid Materials Group, Aalto University School of Chemical Engineering, Finland
heini.e.ijas@jyu.fi / heini.ijas@aalto.fi

The research has been funded by Academy of Finland, Jane and Aatos Erkko Foundation and the Sigrid Jus茅lius Foundation.

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista ty枚el盲m盲盲. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.