色色啦

News

Deciphering the structure of nanosystems with machine learning

The CEST group joins forces with a team in Austria to solve a long-standing puzzle in nanoscience.
Image accompanying publication that resolves the structure of TCNE films on copper
TCNE molecules on the copper surface lie flat at low coverage (top), but then stand upright at higher coverages to minimize their energy. This reorientation behavior was determined with machine learning.

Hybrid organic-inorganic films are important nanosystems for novel applications. Their specific function depends on their structure, in particular how the organic molecules orient on the inorganic component (here a metal surface). The CEST group teamed up with Oliver Hofmann's research group at Technical University Graz in Austria to investigate a specific organic-inorganic hybrid system: films of tetracyanoethylene (TCNE) molecules in contact with copper surface.

By combining two machine learning methods with quantum mechanical density-functional theory calculations, we investigated the structure of TCNE films on the copper surface. We observed a phase transition of flat lying molecules at low coverage to upright standing molecules at high coverage. Our results refute earlier claims that the TCNE molecules are always flat lying and that long-range charge transfer sets in at increased coverage. The solution of this long-standing puzzles opens up further research into the nanostructured behavior of hybrid organic-inorganic materials.

More details can be found in the following publication:

Egger, A. T., H枚rmann, L., Jeindl, A., Scherbela, M., Obersteiner, V., Todorovi膰, M., Rinke, P., Hofmann, O. T., Charge Transfer into Organic Thin Films: A Deeper Insight through Machine鈥怢earning鈥怉ssisted Structure Search. . 

  • Updated:
  • Published:
Share
URL copied!

Read more news

An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saram盲ki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete 鈥 and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.
Aerial view of a coastal city with numerous buildings, a marina, and boats docked. Trees and water surround the city.
Press releases, Research & Art Published:

Study: 70% of emissions from new buildings come from construction 鈥 and this is often overlooked

While energy efficiency and the use of renewable energy have reduced the life cycle emissions of new buildings, emissions from construction have not decreased. Preserving green areas and prioritizing timber construction would make construction more sustainable, researchers emphasize.