ɫɫÀ²

News

Computers learn to understand humans better by modelling them

Computers are able to learn to explain the behavior of individuals by tracking their glances and movements.

Researchers from Aalto University, University of Birmingham and University of Oslo present results paving the way for computers to learn psychologically plausible models of individuals simply by observing them. In newly published conference article, the researchers showed that just by observing how long a user takes to click menu items, one can infer a model that reproduces similar behavior and accurately estimates some characteristics of that user's visual system, such as fixation durations.

Despite significant breakthroughs in artificial intelligence, it has been notoriously hard for computers to understand why a user behaves the way she does. Cognitive models that describe individual capabilities, as well as goals, can much better explain and hence be able to predict individual behavior also in new circumstances. However, learning these models from the practically available indirect data has been out of reach.

"The benefit of our approach is that much smaller amount of data is needed than for 'black box' methods. Previous methods for performing this type of tuning have either required extensive manual labor, or a large amount of very accurate observation data, which has limited the applicability of these models until now", Doctoral student Antti Kangasrääsiö from Aalto University explains.

The method is based on Approximate Bayesian Computation (ABC), which is a machine learning method that has been developed to infer very complex models from observations, with uses in climate sciences and epidemiology among others. It paves the way for automatic inference of complex models of human behavior from naturalistic observations. This could be useful in human-robot interaction, or in assessing individual capabilities automatically, for example detecting symptoms of cognitive decline.

"We will be able to infer a model of a person that also simulates how that person learns to act in totally new circumstances," Professor of Machine Learning at Aalto University Samuel Kaski says.

"We're excited about the prospects of this work in the field of intelligent user interfaces," Antti Oulasvirta Professor of User Interfaces from Aalto University says.

"In the future, the computer will be able to understand humans in a somewhat similar manner as humans understand each other. It can then much better predict not only the benefits of a potential change but also its individual costs to an individual, a capability that adaptive interfaces have lacked", he continues.

The results will be presented at the world’s largest computer-human interaction conference CHI in Denver, USA, in May 2017. The article is available in preprint:

The picture shows how ABC-driven parameters lead to more accurate predictions of user behavior.

More information:

Doctoral student Antti Kangasrääsiö
Aalto University
tel. +358 50 517 1301
antti.kangasraasio@aalto.fi  

Professor Antti Oulasvirta
Aalto University
tel. +358 50 384 1561
antti.oulasvirta@aalto.fi   

Professor Samuel Kaski
Aalto University
tel. +358 50 305 8694
samuel.kaski@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Alusta pavilion. Photo: Elina Koivisto
Campus, Research & Art Published:

Alusta pavilion moved to the Aalto Campus

The giant insect hotel, Alusta pavilion invites pollinators and other species, also humans to get together.
Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.