ɫɫÀ²

News

Computational study reveals the potential of mixed metal chalcohalides in future photovoltaic applications

CEST researchers have successfully identified new and promising candidates for photovoltaic applications using computational methods
graphic showing work flow with solar panel
Graphic showing workflow provided by Pascal Henkel

The CEST (Computational Electronic Structure Theory) group members Pascal Henkel and Patrick Rinke, in collaboration with researchers from the University of Tampere (Finland) and Xi'an University (China), have recently published a study in which they explore properties of mixed-metal chalcohalides using Density Functional Theory (DFT). Mixed-metal Chalcohalides are a class of compounds with potential interest for photovoltaic applications.

These semiconducting materials combine the optoelectronic properties of halide perovskites with the stability of metal chalcogenides. As a result, lead-free mixed-metal chalcohalides have the potential to overcome the stability and toxicity problems of other known halide perovskites and to facilitate the commercialization of novel solar cells. The objective of this study was to identify new mixed-metal chalcohalide materials and alloys that are stable and also suitable for indoor and/or outdoor photovoltaic applications. For this purpose, a total of 27 mixed-metal chalcohalides compounds were considered. In total, 12 promising materials were identified. Nine of these compounds are so far unknown and have been investigated for the first time in this study. In addition, the researchers identified 12 mixed-metal chalcohalides alloys that are suitable for photovoltaic applications and that offer the possibility to fine tune the materials properties for specific lighting conditions. The study provides a first step towards further research on mixed-metal chalcohalides and their future devices. 

Portrait photo showing young man with glasses
CEST researcher Pascal Henkel

So far, mixed-metal chalcohalide compounds have been scarcely explored and only a few of the compounds in the study were previously known (or had even been synthesized). Materials discovery of new mixed-metal chalcohalides through experimental synthesis is generally very time-consuming. Computational tools such as DFT explore materials in silico and can lead the way with accelerated materials discovery. The was published in Chemistry of Materials.

For more details contact

  • Updated:
  • Published:
Share
URL copied!

Read more news

Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
A group sitting around tables in a modern room; some are holding papers and discussing. Photo from the EDI workshop in June 2025.
University Published:

Creating room for connection, dialogue, and collective planning is more important than ever

Two workshops were organised to build bridges and foster meaningful action on EDI at the Aalto School of Business.
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
A person reads a book in front of a large illuminated 'A' sign.
Press releases Published:

Half of highly educated immigrants find employment through Espoo and Aalto’s collaboration

The exceptional employment outcomes are the result of collaboration, in which service design research has played a key role.