ɫɫÀ²

News

Benchmarking Core Excitations

High level quantum mechanical calculations produce a benchmark dataset of 1s core levels for organic molecules
Table of contents figure
The accuracy of high-level eigenvalue self-consistent GW calculations (evGW0) for 1s core levels of organic molecules is assessed

The GW Green's function method has become a popular tool to compute valence excitations for a wide range of substances and materials. In this article, we test the GW method on X-ray photoelectron spectra. We present a benchmark study for 65 molecular 1s excitations. Our absolute and relative GW core-level binding energies agree within 0.3 and 0.2 eV with experiment, respectively. More information can be found in

, D. Golze, L, Keller, and P. Rinke, J. Phys. Chem. Lett. 11, 1840 (2020)

  • Updated:
  • Published:
Share
URL copied!

Read more news

Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.
An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Press releases, Research & Art Published:

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.