色色啦

News

AI is revolutionising health technology

Machine diagnosis may become the norm in the future.
Aalto University / Image recognition is one application that uses deep learning / photo: Mikko Raskinen

Doctors can look at X-ray images and analyse what they see. Thanks to their expertise, they can diagnose a patient鈥檚 health simply by looking at these images.

We are already at the stage where this type of expertise can be stored and automated. With a large number of already classified X-ray images, an artificial intelligence can be trained to diagnose diseases. Thanks to a significant scientific breakthrough called deep learning, there is no need to tell the AI what parts of an image led to the diagnosis; it can discover the diagnostic rules itself.   

AI to solve healthcare labour shortage?

鈥淗ealthcare is one sector that will see a significant change thanks to artificial intelligence. Work in this field has traditionally required expensive knowledge, but now part of that knowledge can be automated鈥, says Professor of Practice Leo K盲rkk盲inen.

He believes that medical diagnoses by machines will be commonplace in the future. Automating repetitive and time-consuming work can help free up expert resources for more demanding tasks in a sector that is plagued by labour shortage.

K盲rkk盲inen has participated in a research project for detecting subarachnoid haemorrhages. The arachnoid membrane separates the brain tissue from cavities in the brain. When a blood vessel in one of these cavities starts to leak, no typical neurological symptoms of a brain haemorrhage may appear, except for a severe headache. In most cases, patients are X-rayed, but there is not always a radiologist present to detect possible leaks in the images. This is where a diagnosis made by an artificial intelligence could save a patient鈥檚 life. 

鈥淭his is AI application at its best. An artificial intelligence does not necessarily do things better than a human, but it can work faster and regardless of the time of day, which is perhaps its greatest advantage鈥, says K盲rkk盲inen.

An artificial intelligence does not necessarily do things better than a human, but it can work faster and regardless of the time of day.

Leo K盲rkk盲inen

Self-learning neural networks

Deep learning 鈥 or neural networks 鈥 is a machine learning method inspired by how we believe that the human brain works. A neural network consists of a very large number of artificial nerves, or neurons, which specialise in performing simple tasks given to them or sent from other neurons. Data moves up through the network鈥檚 layers of neurons, as the system performs combinations of these simple tasks. Thus, each new layer of neurons is tasked with an increasingly complicated task.

Image recognition is one application that uses deep learning. While traditional machine learning methods require very complex programmatic rules for identifying objects in images, a deep learning system can 鈥 with a sufficiently large number of already classified images as input 鈥 automatically adjust its neutral network operation to improve detection accuracy. The system is therefore self-learning. The system can perform tasks that are increasingly complex as the amount and accuracy of the input data increases.

The university is collaborating with hospitals to get access to large amounts of classified data, such as X-ray images, in order to train deep learning systems properly.

鈥淎alto University is participating in several research projects where we collaborate with doctors to identify tools that could help healthcare professionals work faster and more effectively.鈥

  • Updated:
  • Published:
Share
URL copied!

Read more news

A person walks past a colourful mural on a brick wall, illuminated by street lamps and electric lines overhead.
Cooperation, Research & Art, University Published:

New Academy Research Fellows and Academy Projects

A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland 鈥 congratulations to all!
Two flags at Aalto University: a pride flag and a yellow flag. A modern building and green trees are in the background.
Press releases Published:

LGBTQ-Friendly Firms More Innovative

Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.
Person in front of a laptop.
Cooperation, Studies, University Published:

FITech Network University's new project increases the network鈥檚 capabilities in continuous learning

FITech's new FITech FORWARD project aims to develop the member universities鈥 ability to create offerings of continuous learning and micro-credentials to meet the current skill needs in the field of technology. Besides Aalto University, also Tampere University, University of Oulu, and University of Vaasa are involved in the project.