ɫɫÀ²

News

AI boosts usability of paper-making waste product

Researchers from CEST successfully apply AI to enable large scale utilization of lignin as starting material for bioproducts
Graphic showing a birch tree with chemical icons
Photo and graphic with birch tree by J. Löfgren

In a new and exciting collaboration with the Department of Bioproducts and Biosystems, researchers in the CEST group have published a study demonstrating how artificial intelligence (AI) can boost the production of renewable biomaterials. Their publication focuses on the extraction of lignin, an organic polymer that together with cellulose makes up the cell walls of plants. As a side-product of papermaking, lignin is produced in large quantities around the world but seldom used as anything other than cheap fuel. Developing valuable materials and chemicals from lignin would consequently be a big step towards a sustainable society.

A key challenge for the valorisation of lignin is to find the right experimental extraction conditions. These include things like the temperature in the hot-water reactor where the wood is processed, the reaction time and the ratio of wood to water. These conditions not only affect the amount of lignin that can be extracted, but also the physical and chemical properties of the extracted lignin itself. Therefore, knowing how to choose the right experimental conditions is important since the more lignin can be extracted the better, and different lignin-based products may require lignin with different properties.

Photo showing CEST researcher Joakim Löfgren in front of plants
CEST researcher Joakim Löfgren

CEST members Joakim Löfgren and Patrick Rinke joined forces with Milica Todorovic at Turku University and Dmitry Tarasov, Taru Koitto, and Mikhail Balakshin in Aalto’s Department of Bioproducts and Biosystems to find the best extractions conditions for various lignin-based products with the help of , an AI or machine learning method. Their AI approach constructs a computer model that, for a given combination of experimental conditions, can predict both the amount of extracted lignin and its properties. As with any other AI method, Bayesian Optimization needs data to learn from, but in contrast to more common methods such as neural networks, the data collection is guided by the algorithm itself. What this means in practice is that the computer informs the scientist working in the lab which conditions to use for the next experiment. By choosing the conditions in an intelligent way, the AI guarantees that only a small number of experiments will be necessary to create an accurate model.

The successful application of Bayesian optimization to the problem of lignin extraction suggests that AI may soon become a standard tool alongside traditional statistical tools for planning and predicting the outcomes of experiments. Löfgren and Rinke are now actively collaborating with several experimental groups at Aalto to expand their methodology to a wider set of problems in materials science.

This research paper is published in ASC Sustainable Chemistry & Engineering under 

.

For more details contact

Joakim Löfgren

  • Updated:
  • Published:
Share
URL copied!

Read more news

Alusta pavilion. Photo: Elina Koivisto
Campus, Research & Art Published:

Alusta pavilion moved to the Aalto Campus

The giant insect hotel, Alusta pavilion invites pollinators and other species, also humans to get together.
Two students and a professor sitting around a table, talking and looking at laptop screen.
Research & Art, Studies Published:

Call for doctoral student tutors, September 2025

Sign-up to be a tutor for new doctoral students as part of the Aalto Doctoral Orientation Days!
A group sitting around tables in a modern room; some are holding papers and discussing. Photo from the EDI workshop in June 2025.
University Published:

Creating room for connection, dialogue, and collective planning is more important than ever

Two workshops were organised to build bridges and foster meaningful action on EDI at the Aalto School of Business.
Abstract image of glowing teal shapes and pink blocks on a striped yellow and green surface, with a dark background.
Research & Art Published:

Researchers turn energy loss into a way of creating lossless photonics-based devices

Turning energy loss from a fatal flaw into a dial for fine-tuning new states of matter into existence could yield better laser, quantum and optical technology.