色色啦

News

Aalto Team Win AI Research Award

Research into easier-to-interpret deep learning methods win prestigious Notable Paper award at AISTATS2019
Marcus Heinonen receiving the prize
Marcus Heinonen receiving the prize

A paper by an Aalto team, 鈥溾 was awarded the 2019 Notable paper award at the 2019 conference, one of only three papers to be awarded the honour out of a field of over one thousand submissions. The international congress, which took place over 3 days in Okinawa, Japan, was an opportunity for several hundred A.I. researchers from around the globe to get together and discuss their work, and FCAI researchers and students were there presenting talks and posters.

The prize winning paper was written by Pashupati Hegde, Markus Heinonen, Harri L盲hdesm盲ki, and Samuel Kaski and came out of a collaboration between the research groups of Professor L盲hdesm盲ki and Professor Kaski.

New methods for Deep Learning

In deep learning, hundreds of successive computations are combined together to learn very complex tasks. This how computers and phones now recognize faces in images or translate languages. In the new paper by the FCAI team, combining all the computations together is replaced with a continuous transforming flow of inputs, which are used to perform the learning task in way that鈥檚 easier to interpret. The work also presents a new connection between deep learning and a group of mathematical models called 鈥渟tochastic dynamical systems鈥. This connection means that, compared to common neural networks, the new method can understand how much uncertainty there is in the prediction process. This understanding of uncertainty means the new method excels at learning models where there are smaller amounts of data 鈥 potentially useful for future applications like personalized medicine or drug design.

Researchers from Aalto also presented the following talks and posters:

Talks

  • Deep learning with differential Gaussian process flows

    • Pashupati Hegde,  Markus Heinonen, Harri L盲hdesm盲ki, Samuel Kaski

Posters

  • Analysis of Network Lasso for Semi-Supervised Regression

    • Alexander Jung, Natalia Vesselinova,

  • Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution

    • Topi Paananen, Juho Piironen (Curious AI); Michael Andersen, Aki Vehtari  

  • Know Your Boundaries: Constraining Gaussian Processes by Variational Harmonic Features

    • Arno Solin  

  • Harmonizable mixture kernels with variational Fourier features

    • Zheyang Shen, Markus Heinonen, Samuel Kaski  

  • Updated:
  • Published:
Share
URL copied!

Read more news

arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista ty枚el盲m盲盲. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.