ɫɫÀ²

News

A new optical metamaterial makes true one-way glass possible

Researchers have discovered how to make a new optical metamaterial that would underpin a variety of new technologies.
The magnetic properties of a material can affect how it interacts with light.
The magnetic properties of a material can affect how it interacts with light. Photo: Ihar Faniayeu/University of Gothenburg

A new approach has allowed researchers at Aalto University to design a kind of metamaterial that has so far been beyond the reach of existing technologies. Unlike natural materials, metamaterials and metasurfaces can be tailored to have specific electromagnetic properties, which means scientists can create materials with features desirable for industrial applications. 

The new metamaterial takes advantage of the nonreciprocal magnetoelectric (NME) effect. The NME effect implies a link between specific properties of the material (its magnetization and polarization) and the different field components of light or other electromagnetic waves. The NME effect is negligible in natural materials, but scientists have been trying to enhance it using metamaterials and metasurfaces because of the technological potential this would unlock. 

‘So far, the NME effect has not led to realistic industrial applications. Most of the proposed approaches would only work for microwaves and not visible light, and they also couldn’t be fabricated with available technology,’ says Shadi Safaei Jazi, a doctoral researcher at Aalto. The team designed an optical NME metamaterial that can be created with existing technology, using conventional materials and nanofabrication techniques. 

The new material opens up applications that would otherwise need a strong external magnetic field to work – for example, creating truly one-way glass. Glass that’s currently sold as ‘one-way’ is just semi-transparent, letting light through in both directions. When the brightness is different between the two sides (for example, inside and outside a window), it acts like one-way glass. But an NME-based one-way glass wouldn’t need a difference in brightness because light could only go through it in one direction.

‘Just imagine having a window with that glass in your house, office, or car. Regardless of the brightness outside, people wouldn’t be able to see anything inside, while you would enjoy a perfect view from your window,’ says Safaei. If technology succeeds, this one-way glass could also make solar cells more efficient by blocking the thermal emissions that existing cells radiate back toward the sun, which reduces the amount of energy they capture.

The research was published in Nature Communications on 12 February 2024. 

More information: 

Information about the research group

Shadi Safaei Jazi
Doctoral Researcher
+35850 322 9573
shadi.safaeijazi@aalto.fi

Viktar Asadchy
Assistant Professor
+358504205846
viktar.asadchy@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Artistic illustration: Algorithms over a computer chip
Research & Art Published:

Aalto computer scientists in STOC 2025

Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).
A person walks past a colourful mural on a brick wall, illuminated by street lamps and electric lines overhead.
Cooperation, Research & Art, University Published:

New Academy Research Fellows and Academy Projects

A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland – congratulations to all!
Two flags at Aalto University: a pride flag and a yellow flag. A modern building and green trees are in the background.
Press releases Published:

LGBTQ-Friendly Firms More Innovative

Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.