色色啦

News

A breakthrough in photonic time crystals could change how we use and control light

The new discovery could dramatically enhance technologies like lasers, sensor, and optical computing in the near future.
Colourful shapes that represent photonic time crystals
Photonic time crystals are optical materials that exponentially amplify light. Photo: Xuchen Wang

An international research team has for the first time designed realistic photonic time crystals 鈥 exotic materials that exponentially amplify light. The breakthrough opens up exciting possibilities across fields such as communication, imaging, and sensing by laying the foundations for faster and more compact lasers, sensors and other optical devices.

鈥淭his work could lead to the first experimental realization of photonic time crystals, propelling them into practical applications and potentially transforming industries. From high-efficiency light amplifiers and advanced sensors to innovative laser technologies, this research challenges the boundaries of how we can control the light-matter interaction,鈥 says Assistant Professor Viktar Asadchy from Aalto University, Finland.

Photonic time crystals represent a unique class of optical materials. Unlike traditional crystals, which have spatially repeating structures, photonic time crystals remain uniform in space but exhibit a periodic oscillation in time. This distinctive quality creates 鈥渕omentum band gaps,鈥 or unusual states where light pauses inside the crystal while its intensity grows exponentially over time. To grasp the peculiarity of light鈥檚 interaction within a photonic time crystal, imagine light traversing a medium that switches between air and water quadrillions of times per second 鈥 a remarkable phenomenon that challenges our conventional understanding of optics.

Unlocking new possibilities

One potential application for the photonic time crystals is in nanosensing. 

鈥淚magine we want to detect the presence of a small particle, such as a virus, pollutant, or biomarker for diseases like cancer. When excited, the particle would emit a tiny amount of light at a specific wavelength. A photonic time crystal can capture this light and automatically amplify it, enabling more efficient detection with existing equipment,鈥 says Asadchy. 

Creating photonic time crystals for visible light has long been challenging due to the need for extremely rapid yet simultaneously large-amplitude variation of material properties. To date, the most advanced experimental demonstration of photonic time crystals 鈥 developed by members of the same research team 鈥 has been limited to much lower frequencies, such as microwaves. In their latest work, the team proposes, through theoretical models and electromagnetic simulations, the first practical approach to achieving 鈥渢ruly optical鈥 photonic time crystals. By using an array of tiny silicon spheres, they predict that the special conditions needed to amplify light that were previously out of reach can finally be achieved in the lab using known optical techniques.

The team consisted of researchers from Aalto University, University of Eastern Finland, Karlsruhe Institute of Technology, and Harbin Engineering University. The research was recently published in . 

More information

Read more

 Time varying interface and light

A new type of photonic time crystal gives light a boost

The researchers created photonic time crystals that operate at microwave frequencies, and they showed that the crystals can amplify electromagnetic waves.

News
  • Updated:
  • Published:
Share
URL copied!

Read more news

A person walks past a colourful mural on a brick wall, illuminated by street lamps and electric lines overhead.
Cooperation, Research & Art, University Published:

New Academy Research Fellows and Academy Projects

A total of 44 Aalto researchers received Academy Research Fellowship and Academy Project funding from the Research Council of Finland 鈥 congratulations to all!
Two flags at Aalto University: a pride flag and a yellow flag. A modern building and green trees are in the background.
Press releases Published:

LGBTQ-Friendly Firms More Innovative

Firms with progressive LGBTQ policies produce more patents, have more patent citations, and have higher innovation quality as measured by patent originality, generality, and internationality.
Person in front of a laptop.
Cooperation, Studies, University Published:

FITech Network University's new project increases the network鈥檚 capabilities in continuous learning

FITech's new FITech FORWARD project aims to develop the member universities鈥 ability to create offerings of continuous learning and micro-credentials to meet the current skill needs in the field of technology. Besides Aalto University, also Tampere University, University of Oulu, and University of Vaasa are involved in the project.
Five people with a diploma and flowers.
Awards and Recognition, Campus, Research & Art Published:

Spring term open science highlight: Aalto Open Science Award Ceremony

We gathered at A Grid to celebrate the awardees of the Aalto Open Science Award 2024 and discuss open science topics with the Aalto community.